

Learning to Geolocalise Tweets at a Fine-**Grained Level**

Jorge David Gonzalez Paule¹, Yashar Moshfeghi², Craig Macdonald³, ladh Ounis³

¹j.gonzalez-paule.1@research.gla.ac.uk, ²yashar.moshfeghi@strath.ac.uk, ³{firstname.secondname}@glasgow.ac.uk

The fine-grained geolocation of tweets has become an important feature for reliably performing a wide range of tasks. Recent work adopted a basic ranking approach to return a predicted location for tweets based on their content-based similarity to already available geotagged tweets. However, this can diminish Overview the quality of the Top-N retrieved tweets. In this work, we adopt a learning to rank approach towards improving the effectiveness of the ranking and increasing the accuracy of fine-grained geolocalisation.

1. Motivation

Terrier

Team

Recent IR tasks require geotagged tweets at a fine-grained level (local event detection). However, only 1% of the tweets are fine-grained geotagged. Previous work ^[1] used a simple ranking approach (IDF) weighting) to obtain the Top-N geotagged tweets, combined with a majority voting algorithm.

4. Experimental Setup

We use 2 datasets of tweets collected from two US cities (Chicago and New York) in March 2016.

- Training: 20,982 query-tweets from New York, and 16,262 querytweets from Chicago.
- Testing: 20,870 query-tweets from New York, and 16,313 query-
- > However, considering only IDF weighting to perform the ranking can reduce the quality of the Top-N tweets ^[1].
- \succ We aim to improve geolocalisation by improving the quality of the Top-N ranked tweets.

propose a learning to rank ^[2] approach for fine-grained We geolocalisation.

2. Learning to Geolocalise

- > We aim to learn a ranking function (LambdaMART^[3]) to re-rank geotagged tweets (doc-tweets) based on their geographical proximity to a given non-geotagged tweet (query-tweet).
- > We label pairs of geotagged tweets as positive if they are located in the same fine-grained area (i.e. <=1km distance).
- \succ We use our learned model to re-rank doc-tweets based on their probability of being posted in the same area as the query-tweet, and apply a majority voting algorithm to select a location within the Top-N doc-tweets.

3. Features

tweets from Chicago.

> Baseline Model^[1]: Uses an IDF-based ranking approach, and applies a weighted majority voting to select a location within the Top-N content-based similar geotagged tweets.

We test 4 versions of our approach with different subsets of features:

- > L2Geo: incorporates all the features,
- L2Geo_Sim: uses only similarity features,
- > **L2Geo_Content:** uses only *content quality features*
- > L2Geo_Geo: uses only geographical features

5. Results

The figures below present the performance of our proposed approach (L2Geo) against the Baseline^[1] on the Chicago dataset (similar results in New York). We report the following metrics:

- > AED: Distance on Earth in kilometres between the predicted location and the real coordinates of the tweet in our ground truth.
- > Acc@1km: Calculates whether the centroid of the predicted area lies within a radius of 1 km from the real location of a tweet.
- > Coverage: The fraction of tweets in the test set from which our approach finds a geolocation regardless of the distance error.

- We propose a set of features to model fine-grained tweet geolocalisation.
- > We exploit 28 features (see table below) grouped into: content quality features, geographical features and similarity features.

Features	Description	Total
Query Features and Document Features		
Hashtags	Number of hashtags in the text.	2
Mentions	Number of mentions in the text.	2
URLs	Number of URLs in the text.	2
Entities	Number of entities in the text.	2
Verbs	Number of verbs in the text.	2
Adverbs	Number of adverbs in the text.	2
Adjectives	Number of adjectives in the text.	2
Check-in	Whether the tweet is a Foursquare check-in.	2
Hour	The hour of the day (0 to 24 hours) the tweets was posted	2
Weekday	Number of hashtags in the text.	2
User Ratio	Number of hashtags in the text.	2
Query-dependent (relation between query-tweet and doc-tweet)		
Hashtags	Shared number of Hashtags.	1
Mentions	Shared number of Mentions.	1
User	Both tweets belong to the same user.	1
Hour	Both tweets posted the same hour of the day (0h to 24h)	1
Weekday	Both tweets posted the same day of the week (Monday to Sunday)	1
Cosine Similarity	Cosine Similarity between the texts.	1
Total Features		28

References

[1]. Gonzalez Paule et al. 2017. On Fine-Grained Geolocalisation of Tweets. In Proc. ACM ICTIR.

- \succ As the number of voting candidates (i.e. Top-N) increases, our approach achieves lower AED, higher Acc@1km but lower **Coverage** (see paper).
- L2Geo exhibits improvements over the rest of the learning to rank models.
- > L2Geo_Sim shows that the Similarity features are the most informative subset of features.

7. Conclusions

By improving the ranking of geotagged tweets, we observed a better performance in the fine-grained geolocalisation of tweets compared

270.